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SUMMARY

The presence of radomes and instruments that are sensitive to water
filme or ice formatlions In the nose section of all-weather aircraft and
missiles necessitates a knowledge of the droplet impingement character-
lstics of bodies of revolution. Because it 1s possible to approximate
many of these bodies with an ellipsold of revolution, droplet trajec-
tories gbout an ellipsoid of revolution with & fineness ratioc of 5 were
computed for incompressible axisymmetric air flow. From the computed
droplet trajectories, the following impingement characteristics of the
ellipsold surface were obtalned and are presented in terms of dimension-
less parsmeters: (l) total rate of water impingement, (2) extent of
droplet impingement zone, (3) distribution of impinging water, and (4)
local reate of water impingement.

INTRODUCTION

A1l ~-wegther alrcraft and missiles frequently have instruments
located in the nose sectlon of the fuselage that are sensitive to im-
pinging atmospheric water droplets end lce accretlon. For example, it
has been found that the operatlion of en sircraft radar system located
in a nose or wing radome is affected by a layer of lce or water dis-~
tributed over the radome surface. Therefore, it 1s necessary to evalu-
ate, for given flight conditlons, the expected distribution of various
sizes of impinging water droplets over the nose section of the ailrcraft
or missile. In addition, problems such as those encountered in the per-
formance of external armament during flight in lcing conditions require
the evaluation of droplet impingement on bodies of revolution in order
to determine where ice will form.

Although a large variety of body shapes are used for radomes, rocket
pods, and bombs, the Impingement calculations may be made for a body
selected to approximate a large group of these practicel shapes. A pro-
late ellipsold of revolution is & good approximation for many of these
bodles, and it has the additional advaentage of a flow fleld that is
known exsctly for incompressible, nonviscous flow.
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The trajectories of atmospheric water droplets sbout a prolate
ellipsoid of revolution with a fineness ratio of 5 moving at subsonic
velocities were calculated with the ald of a differential enalyzer at
the NACA Lewis laboratory. From the computed trajectories, the rate,
distribution, and surface extent of implnging water were obtained and
are summarized in terms of dimensilonless parameters in thils report.

SYMBOLS

The following symbols are used in this report:

Cp

dmed

Knea

Re
Rep

Reg,med

To

To,tan

semimajor axis

droplet redius, it

semiminor axis

drag coeffilecient for droplets, dimensionless
droplet dlemeter, microns

volume-median droplet diameter, microns
collection efficlency, dimenslonless

208U —
inertla parameter, Sun dimensionless

inertia parameter based on volume-median droplet dismeter,
dimensionless

major axis of ellipse, ft

local Reynolds number with respect to droplet, 2apa;/u,
dimensionless

free-stream Reynolds number with respect to droplet, Zaan/u,
dimensionless

free-stream Reynolds number based on volume-median droplet

diameter, dimensionless
cylindrical coordinates, ratio to major axils, dimensionless

starting ordinate at z = - of droplet trajectory, ratio to
major exis, dimensionless

starting ordinate at 2z = - of droplet trajectory tangent to
ellipsold surface, ratio to major axis, dimensionless
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S distance along surface of ellipsoid from forward stegnation
point to point of droplet Iimpingement, ratio to major axis,
dimensionless

Sm limit of impingement zone, ratio to major axis, dimensionless

t tlme, sec

U free-stream veloclty, ft/sec; or flight speed, mph, when indl-
cated

u local air velocity, ratio to free-stream velocity

v local droplet veleocity, ratio to free-stream veloclty

v magnitude of local vector difference between velocity of drop-
let and velocity of ailr, ft/sec

W rate of impingement of water, 1b/hr

W total rate of impingement of water on surface of ellipsoid,
1b/hr

W local rate of impingement of water, 1b/(hr)(sq ft)

W liquid-water content in cloud, g/cu m

@ 1/4 focal distance of ellipsoid

B local impingement efficlency, dimensionless

€ eccentricity of ellipse defined by a meridian section of
ellipsoid of revolution

Ayl prolete-elliptic coordinates

i viscosity of air, slugs/(ft)(sec)

Pg density of air, slugs/cu ft

Py density of water, slugs/cu £

T time scale, tU/L, dimensionless

Subscripts:

r radial component

axiasl component
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ANATYSIS

The flow fleld around an elllpsold of revolution in a stream moving
in the direction of its major axls 1s exisymmetric. Therefore, the
droplet Iimpingement on the elliptical sections of all meridiasn planes
is the same. Thus, the droplet impingement distribution on an ellipsoid
of revolution can be obtained from trajectories in the z,r plane (fig.
1). The coordinates z and r are dimensionless and expressed as ratio
of actual distance to major exls length L. The dimensionless equations
of motion of the droplet trajectories are of the same form as those
derived in reference 1 and can be written

dv, CpRe 1
ar = 2 & (2 - va) (22)
dv CpRe -
r 1
aT = o g (4r - vr) (30)
where
2
acU
9 WL

end T = tU/L, and all veloclties are in the form of ratioc of local
velocity to free-stream velocity U.

The Reynolds number Re can be obtalned conveniently in terms of
the free-stream Reynolds number

Reg = 2ap,U/n (3)

from the relation
2
— 2 2
<§eo> = (ug - vg)& + (up - vy) (¢)

The coefficient of dreg Cp i1s a function of Reynolds number. The
values of Cp corresponding to variocus values of Reynolds number are
obtained from experimental drag deta (ref. 2).

The alr veloclty components for incompressible nonviscous flow
about a prolate ellipsoid of revolution are obtained from the exact
solution of Laplace's equation in prolate-elliptic coordinates (fig. 2)
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given by Lamb (ref. 3). The details for obtaining the velocity com-
ponents in the z,r plane from Lawb's potential function in prolate-~
elliptic coordinates are given in appendix A, The z and r com-
ponents of the alr velocity field can be expressed in the form

uz=-c[%ln%%>_%<_lﬁ+%ﬁn+l (5)

and

u. = - £ 0r L. jl> = ()
* a WM AN 2 L 02, G &

4

where

’JEE‘/<2+‘§‘>2+I'2
{ﬁ'gqﬂ% - %)2 + r2

= - 1/2
1 1+€ 1
— In |=—} @ —

The constant € 1s the eccentricity of the ellipse defined by the
meridian section of the ellipsold of revolution. For an ellipse with
Tineness ratio of 5, € = J0.98. Equations (5) and (6) were solved for

severael hundred points in the flow field with the use of electronic cal-
culating machines employing punched cards. The values of the air veloc-
ity components u, end wu, as functions of r and =z are given in

figure 3. Filgure S(a) glves ui as a function of 2z for constant
values of 1r, while figure S(b) gives u, as a function of r for
constent z.

a
I

Assumptions that are necessary to the solution of the problem are:

(1) &t & large distence shead of the ellipsoid (free-stream condi-
tions), the droplets do not move with respect to the air.
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(2) No gravitational force acts on the droplets.
(3) The droplets are always spherical and do not change in size.

The first two assumptions are vallid for droplets smaller than
drizzle or raln drops. The assumptions are usually also valid for fall-
ing rain drops, because the airplane velocity is usually much greater
thaen the drop velocity caused by gravitational force. Preliminary cal-
culations have shown thet the third assumption is valid for the order
of accuracy usually required in the design of equlipment for the pro-
tection of aircraft.

METHOD OF SOLUTION

The differential equations of motion (1) are difficult to solve,
because the values of the velocity components and the term containing
the coefflclent of drag depend on the position of the drop at each in-
stant and, therefore, are not known until the trajectory is traced. The
values of these quantities must be fed into the equatlon as the tra-
Jjectory of a droplet is developed. Thils was accomplished by using a
mechanical differential analyzer constructed at the NACA Lewis labora-
tory for this purpose {ref. 1). The answers were obtained in the form
of plots of droplet trajectories with respect to the ellipsold. A
typlical group of droplet trajectories is shown In figure 4. From the
droplet-trejectory plots were cbtained the Implingement characteristics
of Interest discussed in subsequent sections.

The equations of motion (1) were solved for various values of the
parameter 1/K between 0.1 and 90. For each value of the parameter
l/K, a series of trajectories was computed for each of several values
of free-stream Reynolds number Rey: O, 128, 512, 1024, 4096, and 8192.

In order that these dimensionless parameters have more physical signifi-
cance in the following discusslons, some typical combinations of X and
Reg are presented in teble I In terms of the length and the veloclty

of the ellipsoild, the droplet size, and the flight pressure altitude and
temperature.

Before the integration of the equations of motion to obtain the
trajectories could be performed with the differential analyzer, the
initial velocity of the droplets had to be determined at the polnt se-
lected as the starting position. 1In addition, since the starting posl-
tion must be selected at a finite distence ahead of the ellipsold, it
was necessary to make a correction to this starting ordinate in order
to obtain the corresponding starting ordinate ro at z = -= Pre-
liminary tests showed that, from 2z = - to 2z = -2, the trajectories
and streamlines were essentially colncident. Furthermore, between
z = -2 and z = -1, the magnitude of the change in the air velocity

3030
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components with change in r was negligibly small (fig. 3) compared
wilth unity on the alr velocity scale used in solving the equetions.
Consequently, the changes in the droplet velocity and the ordinate =r

along a glven trasjectory between z = -2 and =z = -1 were essentislly
independent of the starting r value or of the value of Rep. There-
fore, a trajectory was run between 2z = -2 eand =z = -1 for each value

of l/K in order to obtain the correct starting conditions at 2z = -1.
By this method 1t was possible to solve the trejectories starting at

z = -1 so that, wlthin the accuracy of the machine, this would be
equivelent to starting the trajectory et an infinite distance ahead of
the ellipsodid.

In order to minimize errors due to changes in the length of the
paper used on the alr velocity input drums caused by humidity and tem-
perature variatlons, the component velocities of the flow field shown
in figure 3 were plotted on 20- by 30-inch sheets of gless tracing
cloth. A fine grid was leld out on the tracing cloth with a plotting
machine constructed for this purpose. The droplet trajectories (fig. 4)
were plotted by the differential analyzer on sheets of acetate in order
to minimize scale changes and damage due to handling. The r-ordinste
of the trajectory plots was scaled to 4 times the z-ordinate in an
effort to improve the accuracy of determining the point of droplet im-
pingement on the ellipsold surface. With this distorted scale, the
trajectories were plotted with respect to an ellipsoid section with =
major axis of 30 inches and & minor axis of 24 inches. The accuracy
with which the various droplet Impingement characteristics could be
obtained is discussed in the following section.

RESULTS AND DISCUSSION

A serles of droplet trajectories gbout the ellipsoid of revolution
with a fineness ratio of 5 at zero angle of attack was computed for the
various combinations of the dimensionless parameters K and Reg.

These date are summarized in figure 5, where the starting ordinate rj

of each trejectory is given as a function of the point of impingement
on the surface S. (S is the distance measured along the surface from
the forward stagnation point to the point of impingement; the relation
between S end z and r is given in appendix B.) The dashed lines
in figure 5 sre the locl of the termini of the constant K curves.
These loci were found to be the same, within the order of accuracy of
the computations, for all values of Rep, as can be seen by comparing

figures 5(a) to (f). The dot-dashed curves emong the comstant X curves
for Rep = 4096 end Reg = 8192 (figs. 5(e) and (f)) were cbtained by
interpolation. From the data presented in this figure, the rate, the
area, and the distribution of water-droplet impingement on the surface

of the ellipsoild can be determined for gilven values of Rep and K.
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Total Rate of Impingement of Water

In flight through clouds composed of droplets of uniform size, the _

total amount of water 1n droplet form impinging on the elllipsold is
determined by the amount of weater contained in the volume within the
surface formed by the tangent trajectories (fig. 1). Therefore, the
total rate of impingement of water (1b/hr) can be determined from the
relation

- 2 2
Wy = 0.33r§ o WLoU (1)

where 0.33 1s a converslon factor, the flight speed U 1s in mlles per
hour, the liquid-water content w 1s in grams per cublc meter, and L
is in feet. When constants are combined,

W, = 1.04r2 . wL2U (8)

In this equation, rg,tan is a measure of the efficiency of catch, be-
ceuse it i1s proportionsl to the collection efficlency (B = lOOrg tan)?
2

defined as the ratlo of the actual amount of water intercepted by the
ellipsoid to the total amount of water in droplet form contalned in the
volume swept ocut by the ellipsoid.

The velue of rg tgpn for & glven combination of Rep and K can

be obtained from figure 5 by determining the value of rg which corre- .
sponds to the maximum S for the constant X curve of interest. The

values of ro,tan fall on the dashed terminil curves of figure 5. In

order to facilitate intergolation end extrapolation, the date are re-

plotted in the form of rO,tan as a function of K for constant Reo

In figure 6, Examination of figure 6 shows that rg,tan increases with

Increasing X TDut decreases wlth incressing Reg.

The accuracy of the determination of T0,tan 1s very much dependent

on the shape of the tangent trajectory in the vicinity of the surface of
the ellipsoid. TFor example, for the combination of l/K =1 and
Rep = 4086 shown in figure 4, the shape of the tangent trajectory and its

neighboring trajectories is such that a small Increase of the order of
0.0007 in ry above the true value of 0, tan wlll result in a trasjec-

tory that deflinltely misses the ellipsold. A similar slight decrease in
the value of ry will result in a trajectory that unmistakebly impinges

on the surface. The tangent trajectory is, therefore, relatively easy

3030



NACA TN 3099 S

to determine for this case; 'and r(Q,ten can, therefore, be determined
to an accuracy of the order of +0.0003. However, for a comblnation of
l/K and Reg that results in small values of TrQ,tan; such as shown
in filgure 4 for l/K = 30 and Reqp = 512, the crowdlng together of the
trajectories near the ellipsoid and the tendency of the trajectoriles to
have the same shape as the elllpsoid surface result in a possible ques-
tion as to the true value of T0,tan Trajectories with ry as much

as 30 percent smaller than the true value of rg tgn mAYy appear to be
tangent. Therefore, in order to avold selecting a trajectory that is
not the tangent when determining r(Q,tan, the value of ro was in-
creased by small increments until a trajectory definitely missed the
ellipsoid. Thus, an upper limit to the region of possible tangency was
estaeblished and used as a guide when selecting the tangent tralectory.
With this method for determining the tangent trajectory, the accuracy
of TrQ,tan in this Reg and X region 1s within 0.0007 for values

of o . tan = 0.01l. TFor reported values of T0,tan < 0.01, the accuracy
s =

in determining the tangent trajectory is somewhat indefinite, but appesars
to be within +0.001.

The effect of body size on the value of r%,tan for selected cloud
droplet size and flight conditions is illustrated in figure 7. The cal-
culated values given in figure 7 for ellipsolds with a fineness ratilo
of 5 and maJor axis lengths between 3 and 300 feet are for flight at 50,
100, 300, or 500 miles per hour through uniform clouds composed of drop-
lets of 10, 20, or 50 microns in dismeter at pressure altitudes of 5000,
15,000, or 25,000 feet and temperatures (most probable icing temperature
given in ref. 4) of 20°, 1°, and -25° F, respectively. For example,
consider & 40-foot-long ellipsold with & fineness ratio of 5 traveling
gt 500 miles per hour with zero angle of attack at a pressure altitude
of 15,000 feet through a uniform cloud composed of droplets of 20 microns
in diemeter. From figure 7(b), rg,tan is 0.000114. If the liquid-

water content of the cloud 1s assumed to be 0.1 gram per cubic meter,
then (from eq. (8)) the total rate of Impingement of water W, is 9.5

pounds per hour.

Extent of Droplet Impingement Zone

The extent of the droplet lmpingement zone on the surface of the
ellipsold 1s obtained from the tangent trajectories. The point of tan-
gency determines the resrward limit of the ilmpingement zone. The 1limit
of impingement Sy for a particular Rey and K condition can be

determined from the meximum S value of the constant X curve of
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interest in figure 5. Again, to facilitate Interpolation, the data are
replotted Iin the form of Sy as a function of K for constent Regy
values in figure 8. The data of this figure indicate that S in-
creases with increasing K but decreases wlth increasing Reg.

Because of the difficulty of determining the exact polnt of tan-
gency on the surface of the ellipsoild of each tangent trajectory, the
accuracy of determining S, is of the order of x0.005. The accuracy

of determining the value of S8 for the intermediate polnts of impinge-
ment gilven 1n figure 5 was much higher, because the points at which the
Intermedlate trajectorles terminsted on the ellipscid surface were much

better defined. -~

The effect of body size on the value of 8 for selected cloud

droplet and flight condlitions is i1llustrated in figure 9. For example,
conglder a 20~-foot-long ellipsoid with a fineness ratio of 5 traveling
300 miles per houwr at zero angle of attack at a 5000-foot pressure
altitude through a uniform cloud composed of S5O-micron droplets. From
figure 9(a), S, 1s 0.109; that 1s, the impingement zone extends 2.18

feet rearward (measured along the surface) from the forward stagnation
point.

Distribution of Impinging Water Along Ellipsoid Surface

The emount of water Impinging on the ellipsoid surface within any
ring of wldth Sp - Sy can be determined if the starting ordinates ro

are known for the droplets that impinge at S; and So. These data
can be obteined from figure 5.

The amount of water (1b/hr) impinging within the ring of width
So - 81 -is given by the relation - :

_ 2 2
W= l.O4(rO,2 ro,l)wLZU (9)

Local Rate of Impingement of Water

The local rate of impingement of water in droplet form
(1b/(hr)(sq £t)) on the surface of the ellipsoid can be determined from

the expression o - S

020 (10)
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where P is the local impingement efficlency. The values of B as a
function of S for combinations of Reg and K are presented in fig-

ure 10. These curves were obtained by multiplying the slope of the
curves in figure 5 by the corresponding ratio roﬁr at each point. The

dot-dashed curves included for Reg = 4096 and Reg = 8192 were obtalned

from the corresponding interpoleted curves of figure 5. Because the
slopes of the rp agalnst S curves (fig. 5) in the region between

S =0sa8nd S = 0.01 are difficult to determine, the exact values of 8
between S = 0 and § = 0.01 are not known. The values of P presented
in this region between S = 0 and S = 0.0l are estimated to be accurate
within 0.05.

IMPINGFMENT IN CLOUDS OF NONUNIFORM DROPLET SIZE

The date presented in figures 5 to 10 would apply directly only to
flights in clouds composed of droplets that are all uniform in size.
The droplets in a cloud, however, may have a range of sizes. Theoreti-
cal calculations (ref. 5) and experience 1n the NACA Lewils icing re-
gearch tunnel on bodles of revolution have shown that the amount of ice
collected when a distribution of droplet sizes is present in the tunnel
is considersbly greater than that which would be obtained if only drop-
lets of the volume-median size were present. Therefore, 1f the cloud
droplet~-size distributlon is known or can be estimated, then the data
mist be accordingly modified (or weighted) before the rate, the extent,
and the distribution of droplet impingement on the ellipsold are
calculated.

For a nonuniform cloud, the total rate of impingement of water on
the ellipsoid can be determined from equation (8) by using the weighted
value of rg tan that corresponds to the droplet-size distribution

2
2
0,tan
for each droplet size (based on values of X and

present in the cloud. The welghted value of r can be obtained

2
by plotting ro,tan

Reg corresponding to each droplet diem.) as a function of the cumulea-
tive volume (in percent) of water corresponding to each droplet size

and integrating the resultant curve. For exemple, consider the cloud
droplet-size distribution shown in figure 11. Suppose that the volume-
median droplet size 1s 20 microns, the veloclty is 200 miles per hour,
the ellipsoid length is 10 feet, the pressure altitude is 5000 feet, and
the temperature is 20° F. For these conditions, the value of Reo,med

is 117.6 and of Kpeg 1s 0.03898. The values of Reo and K corre-

sponding to other droplet sizes In the distributlon ere obtained by
mltiplying Reg peg Y d/dpeq and Kpeg by (8/dpeg)? and are used
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to obtain ré,tan (fig. 6) for each droplet size. The values of

rg tan for this example are plotted as & function of cumulative volume
2

(in percent) in flgure 12. Integration of thls curve glves a welghted

value of 5. ten equal to 0.000425; whereas, the value based on the
b4

volume-median droplet size is 0.00031 (fig. 6).

The local rete of impingement of water at any point for a distribu-
tion of droplet sizes can be obtalned in the same menner. The extent
of the droplet impingement zone should be determined from the values of
K and Rey calculated for the largest droplets present in sufficient

nurber to represent e significant portion of the totel water present
in the cloud.

CONCLUDING REMARKS

The scale factors used in the differential analyzer to solve the
equetions for the range of condltlons presented in flgures 5 to 10 and
the near-parallelism of the trejectories to the surface at large values
of 1/K mede it impossible to obtailn sufficlent accuracy to present
detalled data, such as the rate of local Impingement of water, at points
along the surface of the ellipsold, for values of l/K > 90 for Reg =0

and 1/K > 30 for Req > 128. From teble I 1t can be seen that, for

bodles as large as the fuselage of cargo or passenger airplanes, these
conditions are not uncommon. Examination of figures 5 and 10 shows,
however, thet the extent (usually Sy < 0.03) and rate of local impinge-
ment are small in this Reg and K reglon. Therefore, in this region

a knowledge of the extent of the lmpingement zone and the total rate of
impingement of water as calculated from the data of flgures 8 and 6,
respectively, 1s sufficlent for most applications.

Because the droplet trajectorles about the ellipsoid were calcu-
lated for incompressible fiuid flow, & question as 1o thelr applicability
at the higher subsonic velocitles may arise. In reference 6 1t was
gshown that the effect of compressibility up to the flight critlcal Mach
number on the trajectories ebout a cylinder was negligible. In view of
the resulte obtalned for the cylinder and of the high flight critical
Mach number (greater than 0.9) for the ellipsoild, the ellipsoid impinge-
ment results should be appliceble for most englneering uses throughout

the subsonic reglon.

The data of thls report apply directly only to elllpsolds of revo-
lution with a fineness ratio of 5. Therefore, consideratlion must be
given to the degree of geometric and aserodynsmic similarity bhefore

3030
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applying the data to bodies of revolution with other shapes. In some
cases, where the body 1s of different shape, it may be possible to match
its nose section physically wlth the nose section of an ellipsoid (fine-
ness ratio, 5) of selected length. If, in such a case, the contribution
of the afterbody to the air-flow fleld in the vicinity of the nose of
the body is small (as it often is), then the impingement data for the
matching portion of the surface of the ellipsoid can be used for deter-
mining the impingement characteristics of the nose region of the body.
In other cases, where the body shape differs from that of an ellipsoid
but the fineness ratio is the same, the air-flow field may be simllar
enough that an estimate of the total catch can be obtained from the
ellipsold data. In this case, no detalls of the surface distribution

of impingling water could be obtained.

Lewls Flight Propulsion Laboratory
National Advisory Commlttee for Aeronautles
Cleveland, Ohio, November 20, 1953
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APPENDIX A

CALCULATICN OF VELOCITY FIELD ABOUT AN ELLIPSOID OF REVOLUTION

The incompressible nonviscous veloclty field for exisymmetric flow
gbout an ellipsoid of revolutlion can be obtained as follows:

Conslder = prolate-elliptic coordinete system in the z,r plane
(fig. 1) defined by

z =5 cosh ¢ cos 1
(£1)
T = %% ginh € sin 7

where
O0gf{<L® and 01 <2n

The coordinates =z and r are dimensionless and are expressed as
a ratio to the major axis of. the ellipsoid of revolution of interest.
Examination of equation (Al) shows that { = constant and 17 = constant
represent confocal ellipses and hyperbolas, respectively, wilth a dimen-
sionless semifocal distance of ZG/L.

Let

A = cosh ¢ _
and

L = cos 7
Then

z = gg:hu

L _

and (a2)

=_
>‘[\)
|
[
=__
-
1
tt\)
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where

1<A< o and -1 p<g+l

and A = constant and p = constant also represent confocal ellipses
and hyperbolas, respectively (fig. 2). The major axis of each ellipse
is along the z-axis.

The velocity potential expressed in A,u coordinates can be ob-
tained from zonsl surface harmonics (refs. 3, 7, and 8) and expressed
in the following dimensionless form:

= Cu <5 Ao L _ 1> - B (a3)

where &' has the usual dimensions of velocity potential.

For an ellipsoid defined by the surface AO = constant in a fluid

moving with a free-stream velocity of U in the direction of the z-axis
of the ellipsoid, the constant C is given by

2a
T

Ao 1. Mol
5

___—_.ln___
Ag-1 Ao-t

C =

(a4)

The coordinates A and u can be expressed in terms of z,r coordinates

as Tollows:
1 €\»2 2 €\2 2
A=z (z+§/]+r +W-§>+r (a5)

and

2 2
u:%J(z-l—%) +r2-/\/<z—%>+r2 (a8)

20 4a
where € = f7§ =3 is the eccentriclty of the ellipse defined by

AO = constant. If the surface coordinates of the ellipse of eccentricity

¢ are substituted in (A5), 1t is found that
1

N =E
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Then equation (A3) can be expressed in the form
1 AL €
¢"C“<§}\lnﬁ—f' > -'2—>\}J.
where
o= -1/2
-1 1n <l+e o1
2€ l-¢ 1-¢

In addition, equations (A2) take the form

Au

z = £
2

and

r=€§/\/?\2-l,\jl—u2

NACA TN 3099

(A7)

The A and p velocity components are obtalned from the relations

SR - M N S 1 N P (; ML A ey
A 35 Ne_.E RN € NB_,2 2 ML T2/ 2

€
2 gne1
and
>b -1 b 2 [1-p2 (1
u, = - = — = - = ClsAln -
B EEW ¢ [z du € N2 .2 2 A-T
2h1-2

(a8)

3030
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The =z and r velocity components in the z,r coordinate system
are obtained from equations (A8) and (49) as follows:

Jz oz
A dk-+ u EE_EE = Uy W -1 + Uy A 1-pt
s, " Tas ANEELE MU Neo 2

Ug = Uy
B -
C A+1 2A
_'E<lnX——l-W>+l ()
and
dr or
u=uﬁ +u S N lp. 7\-1 Crp 1
AT Hodsy R Ao-p? \WB-1
(A11)

The velocity components uy; &and u, can be written as a function

of z and r by substituting equations (A5) and (A6) into equations
(A10) and (Al11):

uZ=-c[%1n<J5§&'f—ﬁ—ti>-%<—}—+i)J+l (5)

+ NN - ¢ AN AM
and
up = - € i L 1 6)
(4— r>zz+r +'J—4f—-— (
where

and C is given in equation (A7).
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The solution of equatlons (5) and (6) at several hundred points in
the flow field for an ellipsoid of revolution with a fineness ratio of
5 (€ = ,{o—%) wes accomplished wlth the use of electronic calculating
mechines employing punched cards. The values of u, and u, as func-
tions of r and z are given in figure 3. Figure 3(a) gives u, as
a funetion of 2z for constant values of r, ‘and figure S(b) gives uyp
as & function of r for constant z.

3030
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APPENDIX B

RELATION BETWEEN DISTANCE ATONG SURFACE COF ELLIPSE AND z AND r

The length of arc of an ellipse cannot be reduced to an elementary
function of z and r, but rather belongs to the class of functions
known as elliptic integrals. The length of arec S as a function of
z and r 1s obtained (by the method of ref. 9) as follows:

The equation for an ellipse in the z,r plane can be written
parametrically in terms of 6 as follows:

A sin 8

N
il

(B1)

r B cos 6

where A and B are, respectlvely, the semimajor and semiminor axes
of the ellipse (fig. 1).

Then

ds? = dz% + ar? = [A’z cos20 + B2 sinze] 0% = [AZ - (a2-83) sinze} a2

and
6
S = Aj A/l - €2 sin d8 (B2)
o)
q/AZ-Bz
where ¢ = —x denotes the eccentricity.
This function is of the form
6
B(k,0) = /; AL - k2 sine a6 (83)
where
O< k< 1l

which 1s known as the Elliptic Integral of the Second Kind in Legendre's
form. Tebulated values of this function are available (ref. 10).
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For the purposes of thils report, the distance along the surface

measured from the nose of the body (z = -0.5 and r = 0) is desired, -

or,

where

n/2 8
S = A,<j; A1 - ¥2 sin26 a6 - J; AL - k2 sin2 dB> (B4)

3030

A =0.5

and

k2 = ¢ = 0.98

The relatlon between S and 2z computed from equation (B4) is

shown in filgure 13. The relation between 8 and r 1is given by the
l/K = 0 curve of figure 5, inasmuch as r = rg for infinitely large

values of K.
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(b) r-Component of alr veloclty as function of r for constant values of 7.

Figure 3. - Cancluded.

Ellipsoid flow field.
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Figure 4. - Trajectorles of droplets with respect to ellipsoid.
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.1 .
Inertia parameter, K

Figure 6. - Square of starting ordinate of tangent trajectory as function of inertia parameter.
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Pigure 9. - Maximum extent of impingement zone as function of major axis of ellipsoid.
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Figure 9. - Continued. Maximum extent of impingement zone as function of major axis
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